
Linear Programming Relaxations and Integrality Gaps1

• In this lecture, we look at one of the most powerful techniques in the design of approximation algo-
rithms : the idea of using solvable continuous relaxations to the problem one is studying, and then
rounding the solution to the continuous relaxation to obtain an approximation algorithm.

• Let us illustrate this idea using the vertex cover problem. In this problem, we are given an undirected
graph G = (V,E). Every vertex has a non-negative cost c(v). The objective is to select a subset
C ⊆ V such that every edge (u, v) has at least one endpoint in C, and the cost of C is as small is
possible. This is a special case of the set-cover problem where the edges are elements and the edges
incident to any vertex is a subset. We know that the greedy algorithm (which picks the highest degree
vertex, deletes it, and repeats till all edges are covered) is a O(log n)-approximation.

Exercise: K Show that the approximation factor of the greedy algorithm on vertex cover can be
as bad as Ω(log n). More precisely, describe a family of graphs where the vertex cover returned
by the greedy algorithm is at least c · log n · opt for some constant c > 0.

We now describe a 2-approximation algorithm.

• We set the vertex cover problem as a mathematical program. Consider a variable xv ∈ {0, 1} for
every v ∈ V which is supposed to capture the semantic of whether we pick vertex v. More precisely,
if xv = 1 then v is in the cover, and if xv = 0 then v is not in the cover. In that case, the cost of the
vertex cover is the linear objective function

∑
v∈V c(v)xv. This implies the following program

minimize
∑
v∈V

c(v)xv : xv ∈ {0, 1}, ∀v ∈ V

The above program, of course, is silly : the answer is 0 by setting all xv = 0. If we apply the above
semantic “backwards”, we see that xv = 0 for all v ∈ V corresponds to the “cover” C = ∅. But this
is not a cover at all. Indeed, we need to now assert certain constraints on the xv’s to encode the fact
that the “xv = 1 vertices must form a cover”. A first cut, and this often works, is to just encode the
definition : we need every edge to have an endpoint picked, and so we should have

∀(u, v) ∈ E : xu + xv ≥ 1

And therefore one gets a (possibly) better program of

minimize
∑
v∈V

c(v)xv (Vertex Cover IP)

xu + xv ≥ 1, ∀(u, v) ∈ E

xv ∈ {0, 1}, ∀v ∈ V

1Lecture notes by Deeparnab Chakrabarty. Last modified : 23rd Jan, 2022
These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at
deeparnab@dartmouth.edu. Highly appreciated!
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Theorem 1. For any graph G = (V,E) and any costs c(v) on vertices, the value of (Vertex Cover IP)
equals opt, the cost of the minimum vertex cover.

Proof. Given the optimum solution x∗v to the above program, the set C := {v : x∗v = 1} is a valid
cover of cost IP :=

∑
v c(v)x∗v and thus opt ≤ IP . In the other direction, given the optimal vertex

cover C∗, taking the solution xv = 1 for all v ∈ C∗ and xv = 0 for v /∈ C∗ gives a valid solution to
(Vertex Cover IP) of cost opt. Therefore, IP ≥ opt.

• Math Programs. What we have done is we have converted the combinatorial vertex cover problem into
a mathematical program. A math program consists of variables x = (x1, . . . , xn) and an objective
function f(x) which is to be minimized subject to certain number constraints of the form gj(x) ≥ 0.
The number of variables n is called the dimension of the problem.

minimize f(x) (Very General Math Program)

gj(x) ≥ 0, ∀j = 1, . . . ,m

x ∈ Rn

To be a bit more clear at the risk of being pedantic, let us go over the vertex cover problem again.
Here, the dimension is |V |, and x = (xv : v ∈ V ). The objective function is f(x) :=

∑
v∈V c(v)xv.

There are two kinds of constraints. The first kind has |E| constraints, one for every edge. And they
look like g(u,v)(x) := xu + xv − 1. The second kind of constraints is more interesting. These have
to capture the fact that xv ∈ {0, 1}. One way to capture this is to include x2v − xv = 0, which itself
is two “inequality” constraints. So, for every vertex v we have two constraints with the functions
g+v (x) := x2v − xv, and the other g−v (x) := xv − x2v.

• Linear Programs (LP).It should be clear to the reader by now that solving the general math program
is a very hard problem. Indeed, it generalizes vertex cover, and is thus NP-hard. However, one
of the most powerful algorithmic tools we have is that a large class of math programs are solvable
efficiently. In particular, when the functions f and the gj’s are linear functions of x, the math program
is polynomial time solvable. Such programs are called linear programs. Recall that since a linear
function f(x) := c>x for some n-dimensional vector c, a linear program is often written as follows.

minimize c>x =
n∑

i=1

cixi (Linear Program)

Ax ≥ b, A ∈ Rm×n,b ∈ Rm

x ∈ Rn

• Linear Programming (LP) Relaxations. Going back to the vertex cover problem, we see that the math
program’s objective was linear and one kind of constraints was linear. The problematic constraints
were the “quadratic” constraints which encoded the xv ∈ {0, 1} constraints. The idea of relaxations
is to replace these “hard” constraints by linear ones which capture some essence of this constraint.
This step is often called “linearizing” the hard constraint. In this case, one just replaces these by
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adding 0 ≤ xv ≤ 1. This gives us the following linear program. Since we have relaxed the constraint
xv ∈ {0, 1}, the value of the linear program is at most the value of the integer program which is opt
and thus provides a lower bound to the optimum solution.

lp := minimize
∑
v∈V

c(v)xv (Vertex Cover LP)

xu + xv ≥ 1, ∀(u, v) ∈ E (1)

0 ≤ xv ≤ 1, ∀v ∈ V

Theorem 2. The value of (Vertex Cover LP) is a polynomial time computable lower bound on
opt.

Once again, the constraint matrix A has |E| + 2|V | rows. The first |E| rows correspond to edges,
where the (u, v)th row has a 1 in the u and v entries and 0 everywhere else, the second |V | rows are
an identity matrix, and the next |V | rows are the negative identity matrix. The b vector has 1’s in
the first |E| entries, 0 in the next |V | and −1 in the last |V | entries. For the first time reader, it is
instructive to write down these matrices for small graphs just to get used to them.

• Rounding. We have now seen how to get a lower bound on opt for the vertex cover problem via an
LP relaxation. The next step is to use the solution to obtain an actual vertex cover, and analyze it by
comparing the value of the algorithm’s cover to the value of the LP relaxation. This process of moving
from the “fractions on every vertex” to a true vertex cover is called rounding. For vertex cover, the
rounding is really easy.

1: procedure VERTEX COVER ROUNDING(G = (V,E); costs c(v) on vertices):
2: Solve (Vertex Cover LP) to obtain xv ∈ [0, 1] for all v ∈ V .
3: C ← {v ∈ V : xv ≥ 0.5}.
4: return C.

Theorem 3. VERTEX COVER ROUNDING is a 2-approximation algorithm.

Proof. Let lp be the solution to (Vertex Cover LP). Let C be the solution returned by the algorithm.
We show that (a) C is a vertex cover, and (b)

∑
v∈C c(v) ≤ 2lp, which would prove the theorem since

lp ≤ opt. (b) follows since v ∈ C iff xv ≥ 0.5, and thus
∑

v∈C c(v) ≤
∑

v∈C c(v) · (2xv) ≤ 2lp. (a)
follows since for any edge (u, v), xu + xv ≥ 1, and thus at least one of xu or xv must be ≥ 0.5. That
is, at least one of them is in C implying C is a vertex cover.

• Integrality Gaps. We have thus shown that for the vertex cover problem lp ≤ opt ≤ 2lp. The LP-
relaxation gives a lower bound which is not too bad, it is at most 2 times the optimum. Can this be
improved? In a sense, this question is asking what the quality of the LP-relaxation is, or how “tight”
the relaxation is. This concept is called the integrality gap of the LP-relaxation.

IG := sup
G: graph

opt(G)

lp(G)
(2)
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Theorem 3 shows that IG of (Vertex Cover LP) is at most 2. The following example shows that
IG → 2. More precisely, if we define IGn to be the above ratio when the supremum is taken over
graphs with n vertices, the example below shows IGn ≥ 2− 2

n .

Example 1. Consider the clique Kn on n vertices. Recall, a clique is a graph with all edges. Note
that opt(Kn) = n − 1; if we miss two vertices then we miss covering the edge joining them. On
the other hand lp(Kn) ≤ n

2 ; to see this note that xv = 1
2 for all v ∈ V is a feasible solution to

(Vertex Cover LP). Thus, IGn ≥ n−1
n/2 = 2− 2

n .

• Strengthening the Relaxation. For the LP relaxation (Vertex Cover LP), the above discussion shows
that the integrality gap→ 2 as n → ∞. Therefore, there cannot exist an algorithm which returns a
solution S with cost(S) ≤ 1.99 · lp. In particular, (Vertex Cover LP) “cheats” up to factor 2. At this
point, one should ask : can we stop this cheating?

What does this question mean? Well, let’s go back to Example 1. We could argue that opt = n− 1,
and yet (Vertex Cover LP) gets a much smaller value by putting 1

2 at all points. We know that no
{0, 1}-solution could get such a low value. This means that the constraints (1) are too “slack” which
allow this all 1/2-point as a solution. To prevent this, one can strengthen the LP-relaxation by adding
what is called a valid inequality.

Definition 1 (Valid Inequality). For an LP relaxation of an integer program, a valid inequality is one
of the form a>x ≥ b such that all integer valued x’s satisfy this inequality.

So what we want is to find a valid inequality which every {0, 1}-solution satisfies, but the “cheating
solution”, in this case the all 1/2 solution, doesn’t. We can then add this valid inequality to our LP-
relaxation and re-solve. We would then be guaranteed that this cheating solution won’t arise again.
However, a new one may arise, in which case we rinse and repeat. Till, hopefully, we get something
better. Note that this idea can also be applied instance-by-instance; for the particular problem instance
you are solving it hand, you can look at the LP solution, assert “ah, this is a valid inequality that I can
add to prevent this”, add it and repeat. This method, also known as the method of “cutting planes” is
a (very high level) description of a generic technique used in solving integer programs in practice.

Theoretically speaking, we would like to add a valid inequality, or perhaps a collection of valid in-
equalities, such that upon doing so, we can assert the integrality gap goes down. That is, for every
instance, we get a better rounding algorithm. What could such a collection be for vertex cover? How
would we find one? One way is to look at the integrality gap example at hand, in this case Example 1,
and ask oneself which valid inequality can prevent this cheating? Turns out, we can add the following:

∀{u, v, w} such that (u, v), (v, w), (w, u) ∈ E, xu + xv + xw ≥ 2 (3)

In plain English, (3) states that in any triangle in the graph, every valid vertex cover, or put differently
and {0, 1}-solution to (Vertex Cover LP), must pick at least 2 vertices. So, we can add all these
potentially

(
n
3

)
constraints to (Vertex Cover LP). What is the integrality gap of this new LP relaxation?

Well, it is still≤ 2 since upon adding the constraints the new LP value, call it lp′, only becomes bigger.
And, in Example 1, the all 1/2-solution is no longer feasible. Indeed, a little thought would show that
on the clique Kn, the all 2/3-solution is the best, and so lp′ = 2n

3 . Thus, the integrality gap of this
new LP is ≥ 1.5. Can it be that it is = 1.5? Can one find a better rounding algorithm? Or even
analyze this existing rounding algorithm itself?

Turns out, the answer is no. But the example is not that trivial to find.
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Exercise: KKK Prove that the integrality gap of (Vertex Cover LP) with (3) applied, is also
≥ 1.99 (indeed any 2 − ε). In particular, find a graph with no triangles with “large” vertex
cover. If there are no triangles, then (3) is useless.

Notes

The idea of strengthening linear programming relaxations have been studied extensively in the past two
decades. Indeed, there are systematic ways of taking a linear programming relaxation of any problem and
add valid inequalities in rounds in such a way that in n rounds, where n is the dimension of the problem,
the LP relaxation obtained has no integrality gap! The flip side is that in the tth round one may add nO(t)

inequalities. So unless t is a constant, this would not immediately lead to polynomial time algorithms. Such
systematic ways are often called lift-and-project hierarchies; the two most well studied linear programming
techniques are the Sherali-Adams [6] and the Lovasz-Schrijver [5] hierarchies.

The study of proving integrality gaps for these hierarchies was initiated in the seminal paper [1] of
Arora, Bollobas, and Lovasz (with a later journal version [2] including Tourlakis). This paper proved that
the Lovasz-Schrijver hierarchy wouldn’t bring down the integrality gap of vertex cover to 1.99 even after
O(log n) rounds. A similar result for the Sherali-Adams hierarchy was proved in the paper [4] by Charikar,
Makarychev, and Makarychev. More recently, the paper [3] by Bazzi, Fiorini, Pokutta, and Svensson proves
that no polynomial sized LP relaxation for the vertex cover problem can have integrality gap 1.99. It is
a remarkable result, and builds on lots of exciting and deep work on understanding the powers of linear
programs, and [3] is as good a place to start ones journey into this wonderful area.
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